Eliciting Truthful Measurements from a Community of Sensors

Boi V. Faltings, Jason J. Li, EPFL AI Laboratory Radu Jurca, Google

Health Impact of Air Pollution

Deaths from urban air pollution

A Complex Phenomenon

Why Community Sensing

- Air pollution varies in space and time
 - A single station is not sufficient for analyzing exposure
 - A mass deployment is required for a detailed picture
- Results may be used for:
 - Everyday decisions
 - Health warnings
 - Exposure studies
 - Emission monitoring

Community Sensing

 A community of agents (sensors) making measurements and report values to a center

Community Sensing

 The center aggregates agent measurements, integrates them into an model, and publishes a pollution map as a public service

Community Sensing Challenges

- Sensing agents are self-interested:
 - Each agent (sensor) needs to be compensated for their investment and maintenance.
 - Agents will tend to minimize their efforts and may even be malicious.
- The center has only partial information:
 - The center cannot verify the accuracy of measurements.
 - The center does not know where measurements are the most needed.

Incentive Schemes

- Needed:
 - An incentive-compatible mechanism that makes agents cooperate with the center.
 - Rewards:
 - Monetary: compensate sensors for providing measurements
 - Reputation: exclude sensors that provide wrong measurements (maliciously or otherwise)

A Game Theoretic Setting

At a given time t and location I:

- the center publishes a current best estimate map of the pollution level. This provides a public probability distribution R^{I,t}(x) that the pollution level is x.
- Agents adopt R^{I,t}(x) as their prior belief Pr(x).
- After observing measurement o, the agent has an updated posterior belief Pr_o(x), skewed towards o.

Example

• Agents measure at location I and time t

	L	Μ	Н
Public map	R(L)=0.1	R(M)=0.5	R(H)=0.4
Agent 1:M	Pr _M (L)=0.05	Pr _M (M)=0.9	Pr _M (H)=0.05
Agent 2:M	Pr _M (L)=0.1	Pr _M (M)=0.7	Pr _M (H)=0.2
Agent 3:L	Pr _L (L)=0.3	Pr _M (M)=0.4	Pr _M (H)=0.3

• Every agent updates differently.

State of the Art

- Mechanism with Proper Scoring Rules [Savage, 1971; Papakonstantinou, Rogers, Gerding and Jennings 2011]
 - Agents report the <u>posterior</u> distribution Pr_o to the center
 - The center compares it to a ground truth g and computes the reward Pay(g,Pr_o)
 - Example: quadratic scoring rule $pay(x, p) = 2p(x) approx p(v)^2$

 $p = [l: 0.1, m: 0.7, h: 0.2] => pay(m, p) = 2*0.7 - (0.1^2 + 0.7^2 + 0.2^2) = 0.86$

• Incentive Compatible: highest expected payoff comes from reporting true private beliefs.

Problems with Applying Scoring Rules

- 1. Ground truth is required to evaluate the agent's report.
 - Defeats the purpose of community sensing
- 2. Agent has to submit full posterior distribution.
 - Excessive costly communication

Overcoming Lack of Ground Truth

- Solution: use peer prediction [Miller, 2005]
 - Substitute ground truth with value m derived from peer reports using a model
 - Truthful reporting becomes a Nash-equilibrium
 - If all others report truthfully, best strategy is to report truthfully

Overcoming need for reporting distributions

- Agent only reports a single value s.
- Assumption: agent posterior = prior with largest increase at the measured value o:
 - $Pr_o(o) / Pr(o) > Pr_o(o') / Pr(o')$ for all $o' \neq o$

A New Incentive Scheme

- 2 assumptions:
 - Agents adopt public map as prior belief
 Pr(x) = R(x)
 - Agents believe in their measurement: Pr_o(o) / Pr(o) > Pr_o(o') / Pr(o'), all o' ≠ o
- Peer Truth Serum: scoring rule based on prior rather than posterior belief

Peer Truth Serum

- Center rewards report s by comparing with an unbiased peer estimate m.
- Payment function based on public map R:

$$Pay(s,m) = T(s,m,R):$$

- T(s,m,R) = 1 / R(s) if s = m;
- T(s,m,R) = 0 otherwise.

Why it works

- Suppose agent measures o:
 - Expected payment for reporting s:
 = Pr_o(s) / R(s)
 - By assumption:
 - $Pr_o(o) / Pr(o) > Pr_o(x) / Pr(x)$ for all $x \neq o$
 - $Pr(s) \approx R(s)$ (tolerance given by $Pr_o(s)/Pr(s)$)
 - Truthful reporting s=o has the highest expected payoff.
 - No other assumption about the posterior is required.

Informed Agents

- Agents know more about environment than center:
 - Obvious pollution
 - Exceptional situations
- Their prior belief Pr may be *more informed*: closer to reality than the public map R
- What if this causes non-truthful reports?

Helpful Reports

- Proposition: using PTS, no agent with an informed prior belief will ever falsely report a value b that is over-reported in R (Pr(b)<R(b))
- => non-truthful reports are helpful: they increase the frequency of under-reported values.
- => R and Pr will often converge faster than with truthful reporting.

Reward vs. Reputation

- PTS can be used to compensate agents for their efforts.
- What about malicious reports: small monetary incentives would be insufficient.
- => use PTS to accumulate reputation score: malicious agents will be disregarded.
- Influence limiter (Resnick 2007) provides an elegant scheme to prevent manipulation.

Summary

- Community sensing needs good incentive schemes
- A practical, incentive compatible mechanism for community sensing
- Future work: reputation scheme, possibilities for collusion