

### Delivering Internet-of-Things (IoT) Services in MobilityFirst Future Internet Architecture

Jun Li, Y. Shvartzshnaider, J. Francisco, R. Martin, K. Nagaraja and D. Raychaudhuri WINLAB, Rutgers University October 24-26<sup>th</sup>, 2012



October 24-26, 2012

IoT 2012

# A Big Question

- Does Internet of Things (IoT) need a new FIA design?
  - No, it is an overlay
    - IoT is just another name of Web of Things (WoT)
    - IoT is just a different expression of M2M, CPS (Cyber physical system) applications
  - Yes, it requires new in-network features
    - IoT is a network connecting to physical world objects same as Internet to computers now – for example, everything is addressable with an IPv6 address / identity
    - IoT is a pervasive / ubiquitous computing platform
- MobilityFirst yes, IoT is a part of FIA
  - Things have Identities at MobilityFirst core network
  - Data from/to Things are distributed, processed and accessible at MobilityFirst core network





### The Core Challenges of IoT

- Universal identity
  - EPCglobal, IPv6 enough? Security is the key
- Data and middleware API standards
  - The main reason that causes isolated information islands, IoT ≠M2M Apps
- New business model
  - Mobile operator monopoly vs. open Internet service





#### Mobile networks – all IP flat networks



#### Sensors are IP nodes? All Things are IP nodes?



### Problems of IPv6 ID?

- IPv6 (address as) Identity is not secure
  - DoS attack address can be spoofed
  - In-network pay service not possible extra layer, endto-end session required
- When a Thing assigned to an IP identity
  - It may not run TCP/IP, in many cases, not need to do so
  - It is tied to a network resource associated to a network operator, inflexible for Things with multi-homing, dynamic-homing or no homing



# MobilityFirst – GUID

- Global unique identification (GUID), separated from network location / operator:
  - For any networked objects: hosts, sensors, content or services
- Fundamentally secure

- Anti-spoofing DoS avoidance
- Self-certifying in-network pay service possible
- Transport requires no end-to-end session (TCP/IP)
  - Routing, transport are identity (GUID) based for hop-by-hop data blocks
  - Easily support mobility (disruptive service), in-network multicasting and in general any in-network service

| GUID: | Public Key of Owner | Optional Suffix |
|-------|---------------------|-----------------|
|       |                     |                 |



#### MobilityFirst Future Internet Architecture



• Key Functions

- Fast name resolution (GNRS):
  GUID to address mapping at 50-100ms time scale
- Routing of GUID objects
- Delay tolerant network (DTN): Transport without end-to-end,
- Key Features
  - Self certifying, Multi-homing, Innetwork multicasting
  - In-network caching and computing layers





# Things in Future Internet

- Things are source of dynamic data of interest to Internet applications
- Raw data are usually processed by IoT service (middleware)
- Challenges of traditional application layer approach:
  - Isolated information islands no unified platform
  - High latency and traffic load over Internet





### Overlay vs. In-network Distribution

- CDN (Content Distribution Network) solution
  - Overlay network with edge servers (ES) to reduce latency and traffic load
  - Services are accessed by URLs cached at ES
- MobilityFirst in-network distribution
  - MF routers directly route, cache, compute GUID identified data and middleware (servicelet), enabled by in-network caching and computing layers



October 24-26, 2012



#### Challenges on Middleware Distribution

- GUID solves identity problem, but more challenges on middleware, which are
  - Lack of standards, complex, app-specific (Mobiiscape, UBIWARE, HYDRA etc.)
  - The main reason prevents the convergence of data (from Things). IoT remains difference from M2M apps.
- Linked-Data Space, the semantic web approach, could be the future of middleware for IoT
  - Things are data in Linked-Data Space
  - Middleware are database operations to Linked-Data Space

# Semantic Web Technology

- Building up the relationships between data
  - Store web data with semantic links
  - Discover data from semantic query
- Basics

**ITGERS** 

- The relationship of data is represented in RDF (resource description framework) triples and graphs
- The data source with semantic attributes can be query by SPARQL (an RDF query language)
- Linked Data
  - A huge collection of semantic databases over web
  - Sensors can also be linked data, live streaming data





### An RDF graph sample



• Source: Ivan Herman W3C, Oct. 2011

October 24-26, 2012

IoT 2012



### Linked Data (Sept. 2010)





#### Example: A context-aware IoT Service

• UbiCab, defined as

ITGERS

- *"James, walking on NYC streets, makes a call to a CONTEXT "Nearby Cab"* A phone call from James is automatically routed to a nearby taxi driver.
- Things: James and cabs, connected to network through their phones
- Data: GPS locations on their phones
- Middleware: an IoT service redirect a call from James to a "nearby cab"
- Overlay server: a web service runs at Taxilocation.com
- How in-network service is enabled in MobilityFirst



#### RDF Graph – as a Universal Service Description

- The IoT service is described in RDF (resource description framework) graph
- Service GUID: C1, Cab2 GUID: T2
- T2 subscribe/update to C1 are database operation over the RDF graph





#### MF Router: an Edge Server for IoT Service



October 24-26, 2012



# Choice of Edge Servers

- GNRS server overloading
  - C1 maps to T2 based on dynamic computation (James Loc as input) on GNRS server for C1
  - Pros: simple, statelesss, Cons: location of GNRS not near
- Nearby MF router caching
  - James' request to C1 is computed at a nearby MF router
    E1 where the IoT service (RDF graph) is cached
  - Pros: location-aware, Cons: caching consistency





- Key features of IoT services
  - Limited processing, sensitive to delay
  - Dependent on context (time, location & more)
- In-network service distribution is more beneficial and feasible
  - Fast response, traffic load balancing based on location information
  - Light-weight process
- A V2V ad hoc net:

- Disconnected / low rate to back haul
- Traffic only locally significant
- Fast response, lightweight process



#### Not for apps requiring heavy duty middleware

October 24-26, 2012





### New Business Model: GUID based charging

- Internet, CDN and Cloud computing
  - Accounting based on access control and secure channels required
  - Authentication and Authorization via account management
- MobilityFirst pervasive computing
  - Authentication and authorization via GUID certificate
  - Accounting based on GUID signature verification
  - Can implement charging to access GUID (flat rate), service GUID (800#) and user GUID (pay-per-view)
  - No access control and/or secure channel are needed





- C1 agrees to pay for MobilityFirst in-network service caching
- T1, T2 agree to pay service provider of C1 at subscription
- T1, P1 requests to C1 are accounted by in-network service and charged to service provider GPSlocation.com





IoT 2012



### Conclusions

# MobilityFirst routers and protocol stack enable efficient IoT service distribution

- Universal identity (GUID) and middleware service description (RDF)
- MF routers offer in-network processing of GUID identified / RDF described IoT service
- GUID identity based business models are feasible between MF and IoT service (operators), IoT services and subscribers, IoT services and consumers.